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We consider the influence of temperature on the critical behavior of a weakly interacting three
dimensional Bose system. Using the flow equations of the Renormalization Group and a �4

model with dynamical critical exponent z¼ 2, we calculated the critical exponent �, and the
thermodynamical parameters near the critical temperature, taking in consideration the quan-
tum effects. The quantum effects considered using this method gives for � the value 0.75,
which is close to the value 0.73 obtained by the polynomial method. The critical temperature
shift �Tc was obtained, in the lowest-order approximation, and turns out to be proportional
to the scattering length.

Keywords: Bose fluids; Critical exponent; Renormalization group

1. Introduction

The recent experimental data of the Bose–Einstein condensation (BEC) in magnetically
trapped atomic vapors [1–3] give rise to a great interest for the theory of interacting
bosonic systems. In dilute or weakly interacting Bose systems, the effect of the repulsive
interaction has been studied by different methods [4–10]. The Gross–Pitaevskii [11]
mean-field theory for condensate wave function has successfully described the
condensate phase. The Renormalization Group (RG) method [8,9] has been applied
to describe the critical behavior of the BEC, which was considered as a second-order
phase transition, the weak repulsive interaction changing the universality class from
Gaussian to that of XY-model. The simple model of a homogeneous interacting Bose
gas has been treated by the RG method at T¼ 0 [9], and at finite temperature T [8],
and the results are in agreement to the self-consistent t-matrix theory [6]. As is well
known, the critical behavior is determined by the dimensionality d of the system.
In d<2 systems the RG theory is universal [7], but in the d¼ 2 system the interacting
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Bose system presents the ‘‘quasicondensation’’, an effect similar to the BEC. However,
in this case, near the critical temperature there is no universality, as was predicted by the
t-matrix theory, and showed by RG method [8,12].

The Bose system in d¼ 3 has been first treated using the RG method by Bijlsma and
Stoof [13], the basic result of this study being a different critical behavior for the sym-
metric and broken-symmetry phases. Starting from a more realistic model, which takes
into consideration the trapping effect, the Alber groups [14–17] used the RG method to
study the critical behavior of the trapped interacting Bose gases. Using an energy-shell
procedure and the "-expansion, they obtained a more general flow equation system than
from the homogeneous case [12], but in the thermodynamic limit the results from the
case of homogeneous case are re-obtained. An important result obtained [16] is that,
using the "-expansion, they showed that the discrepancy between the symmetric and
symmetry-broken phases [13] is an artifact, due to an improper treatment of the
infrared divergencies appearing at finite temperature. The flow equations obtained in
that study are written for the case of z¼ 2, and solved in the high-temperature limit,
giving for the critical exponent � the value 0.600 which is closer to the 0.67 a value
obtained in experiments. However, the polynomial expansion gives for this critical
exponent the value 0.73.

The aim of our study is to perform a calculation of this exponent at low temperatures
using the scaling field method [18], which has been employed in the study of the quan-
tum effects in [19]. This method will enable thermodynamical properties to be calculated
in the low-temperature domain, even for a d¼ 3 interacting bosonic system. In this way
we can estimate the importance of the quantum effects in this transition, which we also
expect to be important for the critical temperature, coherence length, and the
specific heat. We anticipate the importance of this effect on the critical exponent �,
compared to the previous estimations.

The article is organized as follows: In section 2 we present the model and the flow
equations. The scaling field and the thermodynamic properties will be evaluated in
section 3. Using these results, we also calculate the critical condensed density of
particles and the critical temperature. The results will be discussed in section 5,
in connection with some results from fundamental principles.

2. Model and scaling equations

We start with the standard action [12,13]:

S ¼
1

2

Z
d� d3r ð@� � r2 þ r0Þj�j2 þ

u0
8
j�j4

h i
, ð1Þ

where � is the imaginary time, r0 is the chemical potential, u0 is the bare interaction, and
�ð�, rÞ is the n-component bosonic field. This action has been studied by RG method
in the k ¼ ðk,!n) space by integrating out the fast degrees of freedom and rescaling
the variables as k0 ¼ kb, !0

n ¼ bz!n, T
0 ¼ bzT, and the field operator as �0ðk0,!0

nÞ ¼

b�ðdþzþ2Þ�ðk=b,!n=b
zÞ, where z is the dynamical critical exponent, and the renormaliza-

tion parameter b is parameterized as b ¼ expðl Þ.
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The scaling equations for the parameters T(l ), r(l ), and u(l ) have been obtained
following the general method [8,12–14], as:

dTðl Þ

dl
¼ zTðl Þ, ð2Þ

drðl Þ

dl
¼ 2rðl Þ þ

nþ 2

4
uðl ÞK3F1½rðl Þ,Tðl Þ�, ð3Þ

du

dl
¼ 4� ðdþ zÞuðl Þ �

nþ 8

4
K3F2½rðl Þ,Tðl Þ�: ð4Þ

In these equations the function F1½rðl Þ, ðTðl Þ� has the form:

F1½rðl Þ,Tðl Þ� ¼ coth
1þ rðl Þ

2Tðl Þ
, ð5Þ

which is different from [8,12], but identical with [16]. The difference is in fact a constant,
and it is connected to the presence of the two channels in the perturbation calculation.
The function F2½rðl Þ,Tðl Þ� is given in [8,12], but in the low-temperatures domain it is
taken as a constant, and in this way we can solve the equation for u(l ). In this case,
the expansion parameter is " ¼ 2� d, and for d¼ 3 it is negative. We will perform
the calculations using the notation d ¼ 2þ j"j. Near the quantum critical point
(QCP) we can solve the equation for u(l ) exactly and the solution is:

uðl Þ ¼
u0e

�j"jl

1þ ½ðK3=4Þe�j"jl � 1�
, ð6Þ

where K3 ¼ 1=2�2. Following the method developed in [19], we solve the equation for
r(l ) and the solution has the form:

rðl Þ ¼ e2l r0 � r0c þ
1

2
K3Tuðl Þ ln

1

1þ e�1=Tðl Þ

� �
�
K3uðl Þ

4
ð7Þ

where r0c ¼ K3u0=4.
These solutions will be used in the next section to study the influence of the quantum

effects on the critical behavior. The general method applied to solve this problem is to
obtain the solutions of the flow equations (2–4) and to get the scaling fields, which will
be used to calculate the thermodynamic quantities.

However, in the critical region all these quantities are singular. We can study the
influence of quantum effects on the critical behavior taking a value of l on the flow
equations which is close to the critical region, but in such a way that we can
apply the perturbational methods. This value, denoted by l� will be calculated in the
next section.

3D dilute Bose liquid at finite T: RG approach 9

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
3
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



3. Scaling field and thermodynamics

The scaling field tr(l ) is defined as [18,19]:

trðl Þ ¼ rðl Þ þ
K3uðl Þ

4
, ð8Þ

and using equation (6) we get for the scaling field the general form trðl Þ ¼ e2ltrðT Þ,
where:

trðT Þ ¼ r0 � r0c þ
K3uðl ÞT

2
ln

1

1þ exp½�1=Tðl Þ�
: ð9Þ

In order to describe the critical behavior, we will calculate the thermodynamic
parameters in the symmetric phase using the scaling field tr(l ) as in [18] for classical
phase transitions and [19] for the quantum case. The basic idea is to get an expression
for l? which drives us out of the critical region but still contains the influence of the
quantum criticality. We get it using the condition trðl

?Þ ¼ 1. The obtained value of l?

is necessary in the calculations of the thermodynamic quantities in the critical region.
From this condition we get for Tðl?Þ ’ 1=u0, and the expression for l? is approximated
by the expression:

l? ’ �
1

2
ln½T=Cðu0Þ�, ð10Þ

where Cðu0Þ ¼ ðK3u0=2Þln 1=u0. The temperature dependence of tr(T ) in the critical
region will be obtained from equation (8) using equation (6) for uðl?Þ. In this way
we get, in the critical domain using equations (9) and (10), the expression:

trðT Þ ’ r0 � r0c þ
K3u0 lnð1=u0Þ

2
T 3=2 ð11Þ

This is one of the most important result of our calculation, because the coherence length
�(T ) is given [19]:

�ðT Þ � ½trðT Þ�
�1=2, ð12Þ

and the critical exponent �, defined by �ðT Þ � T��, is 0.75, very close to the value 0.73
obtained by the polynomial expansion [16]. An important quantity of this system is the
density of the particles in the critical region given by [12]:

n ¼
1

4�
T 3=2 ln 1� exp

rðl?Þ

Tðl?Þ

� �� �
ð13Þ

10 M. Crisan et al.
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We can calculate the ratio rðl?Þ=Tðl?Þ from Tðl?Þ ¼ Te2l
?
and the relation (7), as:

rðl?Þ

Tðl?Þ
’ T "=2u0I3D ð14Þ

where I3D is:

I3D ¼
1

2

Z 1=T

e�2l?=T

dx
xj"j=2

ex � 1
, ð15Þ

which in the low-temperature domain ðT�! 0, l? � 1Þ can be calculated exactly as:
I3D ¼ ð1=2Þ�ð1=2Þ�ð1=2Þ, where �(m) is the gamma function and �ðnÞ is the Riemann
Zeta. From equations (13)–(15) we obtain for the density n the expression:

n ¼
1

4�
T 3=2 ln 1� expð�aT1=2Þ

� �
, ð16Þ

where u0 ¼ 8�a is the coupling constant and a is the s-wave scattering length.
The density of the free energy f is given by the general equation [12]:

df

dl
¼ ðdþ zÞfþ g½rðl Þ,Tðl Þ�, ð17Þ

where f ¼ f ½rðl Þ,Tðl Þ�. The general expression for g½rðl Þ,Tðl Þ� has the form:

g½rðl Þ,Tðl Þ� ¼ Kd

X
!n

½1þ rðl Þ � i!n�, ð18Þ

and performing the summation on the bosonic Matsubara frequency !n we get:

g½rðl Þ,Tðl Þ� ¼ KdT ln exp
1þ rðl Þ

T
� 1

� �
�
Kd

2
½1þ rðl Þ�: ð19Þ

Using this result, we calculate the free energy density fðr0,T Þ as:

fðr0,TÞ ¼ f0 þ
Kd

2

Z l?

0

dl0e�ðdþ2Þl0 ½1þ rðl0Þ�, ð20Þ

where f0 is the free energy density in the absence of fluctuations. For the case d¼ 3
system, we will calculate the free energy density fðr0,T Þ using for rðl0Þ given by
equation (7) the expression:

rðl0Þ ’ �
K3T expð2l0Þ

2
ln½1þ e�1=Tðl0Þ�: ð21Þ

3D dilute Bose liquid at finite T: RG approach 11
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From equation (20) using equations (21) and (10) we obtain for the free energy density:

fðT Þ ’ f0 � CT 2þð3=2Þ, ð22Þ

where C is a constant. The specific heat cðT Þ ¼ �T@2f=@T2 will be calculated near the
critical point as:

cðT Þ=T � T 3=2 ð23Þ

which is a particular case of the scaling behavior which gives for the critical exponent
� ¼ �ðd� 2Þ=2.

4. Critical temperature

The interaction dependence of the critical temperature Tc of dilute homogeneous Bose
gas has a long and controversial history, and the different results of the critical tempera-
ture shift �Tc ¼ ðTc � Tc0Þ=Tc0 (Tc0 is the critical temperature for the BEC of the free
Bose gas) are presented in [20]. Using the model described by equation (1), many
authors obtained that the critical temperature shift �Tc increases linearly with the scat-
tering length a. The systematic investigation of the problem by the Baym group [21–25]
leads to the dependence of the critical temperature shift �Tc ¼ can1=3. This result has
been obtained in the lowest order, and the values obtained for the constant c are
very different. The higher order corrections have been obtained [26], but even at the
present time there are important differences between the numerical values [20]. In the
following, we will use the equation (13) to calculate the dependence of the critical
temperature of the condensed state [12]. The quantity rðl?Þ=Tðl?Þ is given by
equation (14) which we will calculate as I3D ¼ �ð3=2Þ�ð3=2Þ, taking the integration
limits in equation (15) as zero and infinity. The equation for the critical temperature
Tc becomes:

n ¼
T3=2
c

4�
ln 1� expð�acT1=2

c Þ
� �

ð24Þ

where c ¼ ð�Þ�1=2�ð3=2Þ. In the right-hand side of this equation, we approximate
Tc ’ Tc0 ¼ ð4�Þ1=2½n=�ð3=2Þ2=3�. From equation (24), in the approximation of small Tc

we get:

Tc ’ Tc0 1þ 2:53an1=3
� �

ð25Þ

Equation (25) gives �Tc=Tc0 ¼ can1=3, where c ’ 2:53 can be compared with c¼ 2.5
[22,23] obtained by ladder summation. The dependence of the ratio Tc=Tc0 as function
of the parameter n1=3a is given in figure 1. This linear increase is relevant in the
approximation of dilute interacting Bose gas.

Following the general method applied recently by March and Tosi [27] for the
quasi-two-dimensional bosonic system, we can calculate the localization length lc

12 M. Crisan et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
3
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



from � � l�2
c using equation (24), in the approximation of a weak interaction. As in the

case of the quasi-two-dimensional systems we get lc � n�1=2.

5. Discussion

In this section we will discuss our main result, the value of the critical exponent �¼ 0.75,
in connection with the existent values calculated in literature. The value �¼ 0.600
is obtained in the lowest order [16], which is the same for the case of the classical
Wilson theory which is due to the approximation of the Bose function fB(E ) by
fBðE Þ ’ T=ðE� �Þ. We mention that the same approximation has been made in [13]
and results give the critical exponent �¼ 0.53, which is close to 0.600, considered as a
reference value. A better result was obtained in [16] �¼ 0.650 which improved the
approximation, but the calculation still remains in the classical regime. The quantum
effects have been captured by Andersen and Strickland [28], retaining RG calculations
of quantum effects. In this way they got �¼ 0.73, a value which is close to our result, but
still different to �¼ 0.67 [20,29] obtained for 4He. We suspect that the inclusion of quan-
tum effects in the RG calculations overestimated these effects compared to the classical
fluctuation effects, but also some more accurate measurements on real dilute bosonic
systems (4He). We hope that more accurate measurements on other thermodynamic
quantities in the critical region on the atomic vapors will provide useful information
on other critical exponents. The dependence of the critical temperature Tc on n1=3a
has been measured recently [30] and our results are in agreement with these data in
the low-temperature regime. As was recently remarked in [25], the linear dependence
of the critical temperature shift is essentially connected to the approximation of the
Bose function by the classical expression used in [16] for the calculation of the critical
exponent �, but it gives also different values for the constant c. From figure 1 we can see

T
c
/T

c
0

Figure 1. The ratio Tc=Tc0 plotted as a function of the parameter n1=3a , for different values of c. Line 1 was
obtained using c ¼ 2:53, line 2 corresponds to c ¼ 2:9 [22] and line 3 corresponds to c ¼ 4:66 [13].
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that our result is close to the case from [22], where the quantum effects are considered,
and quite different as magnitude from [13] where the classical approximation was used.

The calculation of the critical temperature shift in higher order in a is still an open
problem.
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